

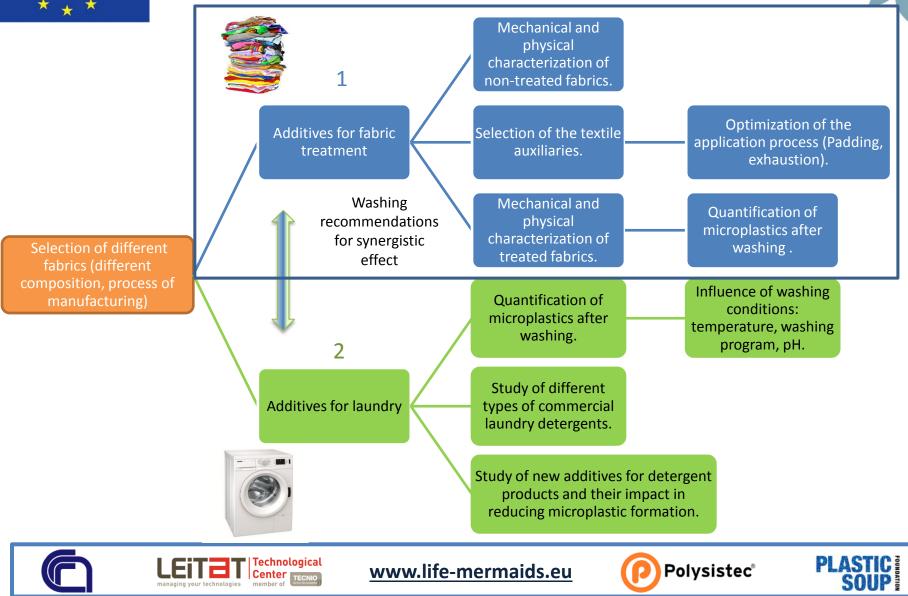
MERMAIDS

LIFE13 ENV/IT/001069

Problemática de los tejidos sintéticos. Hacia la producción de tejidos más sostenibles

> 1/12/2016 LEITAT, Terrassa

Àngels Rovira, Marolda Brouta-Agnésa, Rosa Escudero, Laura Gelabert, Laia Puigmal, Raquel Villalba, Émilie Mespoulhes.



Experimental work plan

mermaids.

OCEAN CLEAN WASH

Objective

Select and study different types of commercial textile auxiliaries with potential to reduce the fibre breakage and avoid the loss of microfibres during the domestic washing.

Introduction

Main parameters that could affect the microfibres breakage

PHYSICAL

- Fibre length
- Linear density (yarn)
- Yarn twist

4

• Fabric density

MECHANICAL

- Abrasion during the spinning/weaving process
- Degradation under use conditions (pilling)
- Domestic washing process

	Influence on the microfibres release		
Fibre length	High length	linear High linear	
Linear density	Low linear density		
Yarn twist	High twist	Low twist	
Fabric density	High density	Low density	
	\sim		

Others: fibre fineness, resistance, dying method, etc.

Introduction

Main parameters that could affect the microfibres breakage

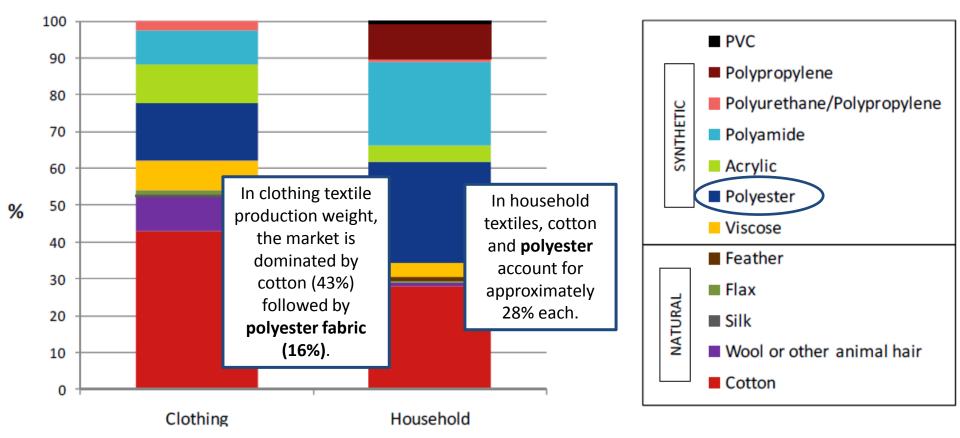
PHYSICAL

- Fibre length
- Linear density (yarn)
- Yarn twist
- Fabric density

MECHANICAL

- Abrasion during the spinning/weaving process
- Degradation under use conditions (pilling)
- Domestic washing process

Fabric pilling



Selection of textiles

Percentage breakdown of consumption by material for clothing and houshold textiles (Source: Environmental Improvement Potential of Textiles IMPRO-Textiles, EU-27).

Selection of textile auxiliaries

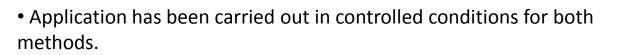
- The textile auxiliaries will:
 - 1. Provide a physical barrier to protect the fibres.
 - 2. Bind and collect microplastics.
- General requirements:
 - 1. Do not change the fabric touch
 - 2. Water based emulsions

Polysiloxane

Textile auxiliary	AUX1	AUX2	AUX3	AUX4	AUX5
Chemical description	PU resin	PU /Acrylic resin	Acrylic resin	Acrylic resin	Silicone emulsion
Ionic character	Anionic	Anionic	No-Ionic	Anionic	Cationic / Non-ionic

Polyurethan

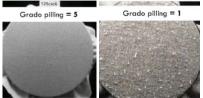
Polyaciviate



Aplication process

	Padding	Exhaustion	
Auxiliary concentration	10-20-30 (g/L)	1-5 (g product /g fibre)	
Speed (m/min)	3-6	-	
Pressure (Kg/cm ²)	3	-	
Temperature (ºC)	-	55-60	
Time (min)	-	35	

	Drying	Curing
Temperature (ºC)	110	160
Time	1'	1'30''



Fabric degradation under use conditions

Martindale method

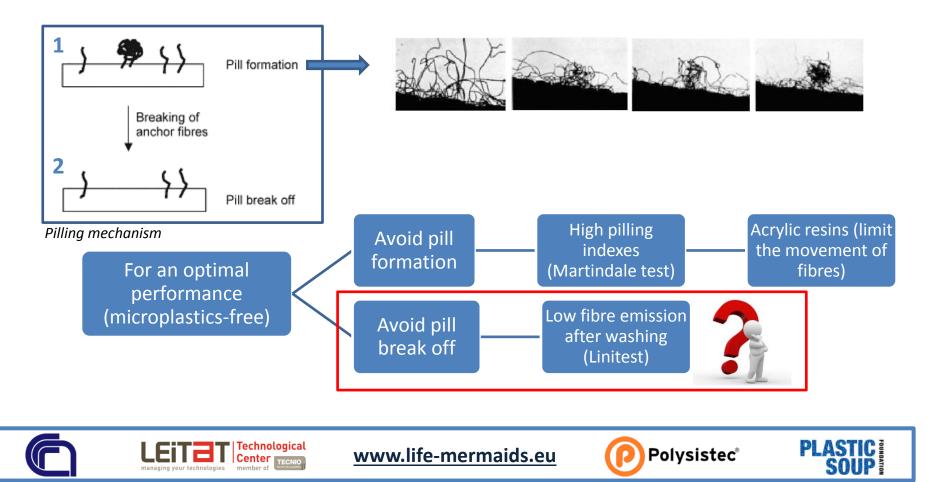
- Abrasion and pilling testing: Determination of fabric propensity to surface fuzzing and pilling.
- Martindale Method: EN ISO 12945/2. Cycles: 2000/5000. Friction against wool fabric (higher abrasion).

Degradation templates for the pilling resistance test (left: pilling index number 5; right: pilling index number 1).

Fabric degradation under use conditions

Martindale method

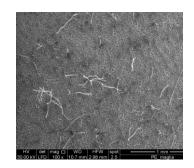
		Best pilling index			
Textile auxiliary	AUX 1	AUX 2	AUX 3	AUX 4	AUX 5
Chemical description	PU resin	PU /Acrylic resin	Acrylic resin	Acrylic resin	Silicone emulsion
 Acrylic resins (AUX3/AUX4) provide a clear improvement in the pilling effect. 				Worst pilling index	



Fabric degradation under use conditions

Washing, filtration and quantification

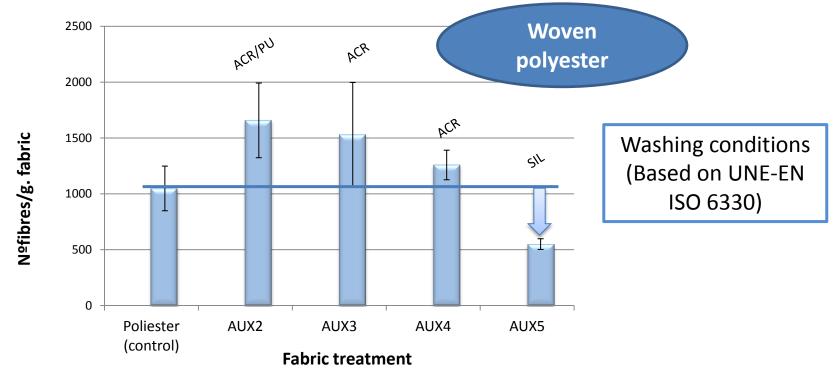
Study the influence of the laundry process on the fibre release:


- 1. Washing cycles comparing different washing conditions.
- 2. Washing water filtration
- 3. Fibre quantification

Lini-test washing device : based on ISO 105-C06:2010.

Filtration

SEM micrograph containing PES microfibres



PLASTIC

SOUP

Quantification of microfibres released

chnological

• AUX 5 (silicone emulsion) has shown a trend of reducing the fibre release during washing.

Conclusions

- The emission of microfibres can be prevented or reduced by *i*)
 appropriate yarn and/or fabric construction or *ii*) by applying a suitable finishing.
- The quantification of fibres after the washing process (at lab scale) results in **better values** for the **silicone emulsion** (AUX5).
- AUX5 reduced the fibre release with the conditions set in the lab due to a softening effect between fibres and washing medium.
- Softening agents reduce the friction between the fibres and decrease their probability to break during the wash.

Thank you for your attention!

Àngels Rovira Cort arovira@leitat.org

LEITAT – Technological Center

C/ de la Innovació, 2 08 225 Terrassa (Barcelona) Spain

