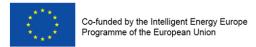

BENCHMARKING TOOL for Sport Facilities

Josep Maria Granollers
Catalan Institute for Energy
(ICAEN)



Final Dissemination Event **21** February **2017**, Brussels

renovation towards nearly zero energy SPORT buildings

Definition and Target

Tool for tracking energy performance of European Sport Centers.

Friendly and easy to use.

Login through:

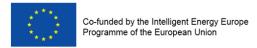
http://step2sport.eu/

TOOL'S STRUCTURE

The Tool has 2 parts:

Calculator

Input DATA to obtain an assessment of which is the degree of performance of the Sport Center in terms of efficiency and demand to have a vision on how far are from NZEB state.


Toolbox

Qualitative part of the Tool.

Contains very useful information for Sport Centers willing to improve its performance.

Linked from the Calculator (the results part)

TOOL CALCULATOR: DATA INPUT

Has 2 parts: <u>Data input</u> and <u>Results</u>

GENERAL DATA Input:

General DATA

Sport Complex, include multi-function sports centres with indoor swimming pools and covered outdoor swimming pools, gymnasiums and/or sport halls

Sport Hall, include indoor arenas that are used for basketball, voleyball, handball, tennis as well as other sport activities. Sport buildings composed by sports hall combined with sport rooms (aerobics, spinning, etc) are included within this category

Gymnasium, sport building composed exclusively by gyms, squash courts, spinning or multiactivity rooms

Indoor Swimming Pools, sport facilities composed only by swimming pools.

Ice rinks, building exclusively composed of an ice rink

5

Sport	Centre	IVAIVIE
CITY		

COUNTRY

TYPOLOGY*

GROSS FLOOR AREA (m²)

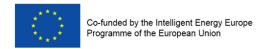
Number of HOURS of operation per year

Number of USERS (average value)

WATER POOL SURFACE (m²)

ICE sheet SURFACE (m2). Only for Ice-rinks

Number of DAYS of Ice-rink working


Reference DATE (YEAR)

Name of contact person using this tool

E-mail of contact person

Ī			
Ī			

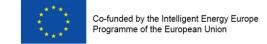
step2sport TOOL CALCULATOR: DATA INPUT

ENERGY DATA Input:

ENERGY DATA

CONSUMPTION (CONSUM)						
	year -1	year -2 (Optional)	year -3 (Optional)			
YEAR						
ELECTRICITY (kWhe/y)						
NATURAL GAS (kWht/y)						
NATURAL GAS (m³/y)						
FUEL OIL (liters/y)						
WOOD Chips (Biomass chips) (Tons/y)						
WOOD Pellets (Biomass Pellets)(Tons/y)						
PRODUCTION (Renewable). P _{RFS}						
PHOTOVOLTAIC, PV (kWhe/y)						
SMALL WIND (kWhe/y)						
SOLAR THERMAL (kWht/y)						
GEOTHERMAL (kWht/y)						
PRODUCTION (Use of Cogeneration, CHP). P _{CHP}						
ELECTRICITY (kWhe/y)						
HEAT (kWht)						
COOL (kWht)						

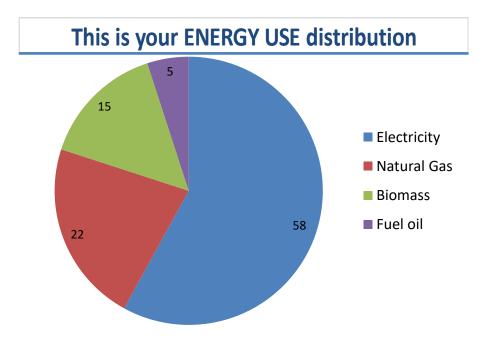
The more data provided the best results obtained

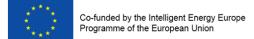

TOOL CALCULATOR: DATA INPUT CLIMATE DATA Input:

WEATHER DATA						
	year-1	year -2	year-3			
YEAR						
Cooling Degree Day (CDD), BT=21°C						
Heating Degree day (HDD) BT=18°C						
Heating Degree day (HDD) BT=26°C *						
*: only for typology 4						

BT is the Base Temperature at which degree days are calculated.

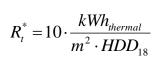
How to obtain Degree Days Guide:


Tool Box (1)

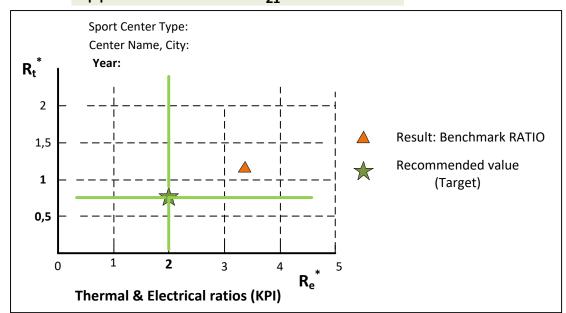


TOOL CALCULATOR: RESULTS

Energy Distribution



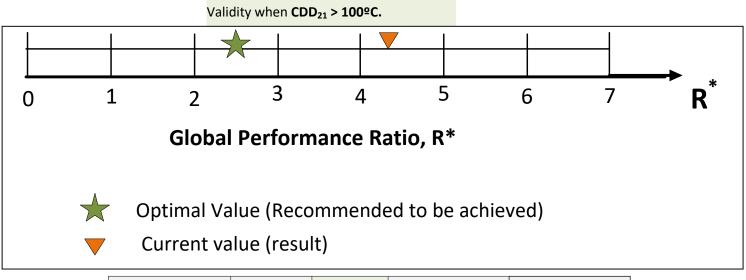
TOOL CALCULATOR: RESULTS


Thermal and electrical energy ratios

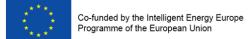
The following graphic will be displayed for: Sport Complexes, Sport Halls & Gymnasiums

Applicable when $CDD_{21} > 100^{\circ}C$.

$$R_e^* = 10 \cdot \frac{kWh_{elec}}{m^2 \cdot CDD_{21}}$$


Energy Efficiency Ratio	Current Ratio	Target Ratio	Recommended Improvement (%)	Check for energy efficiency measures
Rt* (Thermal Performance)	1,01	0,8	21	Tool BOX (2)
Re* (Electrical Performance)	3,18	2	37	Tool BOX (3)

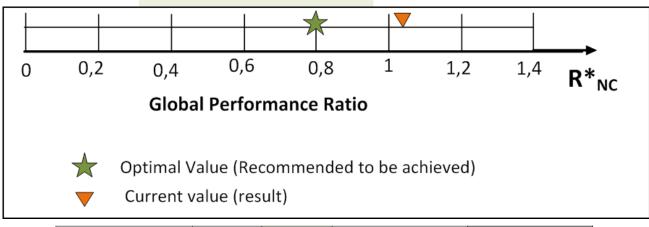
TOOL CALCULATOR: RESULTS


Overall Performance ratio

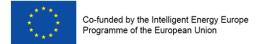
For the following facilities: Sport Complexes, Sport Halls & Gymnasiums

Overall Energy	Current	Target	Recommended	Check for energy efficiency measures
Efficiency Ratio	Ratio	Ratio	Improvement (%)	
R*	4,19	3	28	Tool BOX (4)

$$R^* = 10 \cdot \frac{kWh_e \cdot HDD_{18} + kWh_t \cdot CDD_{21}}{m^2 \cdot CDD_{21} \cdot HDD_{18}}$$

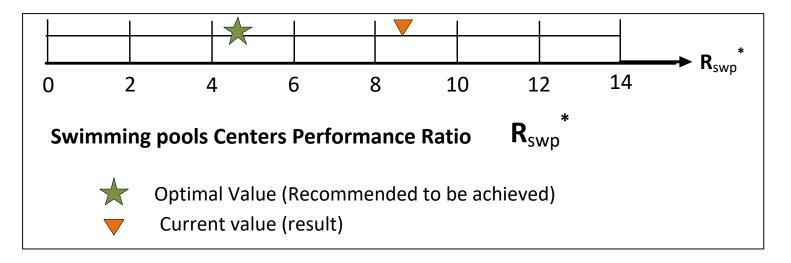


TOOL CALCULATOR: RESULTSOverall Performance ratio


For the following facilities: Sport Complexes, Sport Halls & Gymnasiums

Validity when CDD₂₁ < 100°C.

Overall Energy	Current	Target	Recommended	Check for energy efficiency measures
Efficiency Ratio	Ratio	Ratio	Improvement (%)	
R*		0,8		Tool BOX (5)

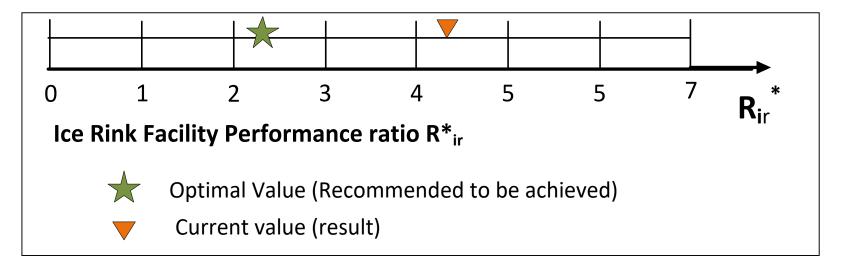

$$R_{NC}^* = 10 \cdot \frac{kWh_{TOT}}{m^2 \cdot HDD_{18}}$$

step2sport TOOL CALCULATOR: RESULTS

Energy Performance Ratio for indoor Swimming Pools

Facilities: Indoor swimming Pools

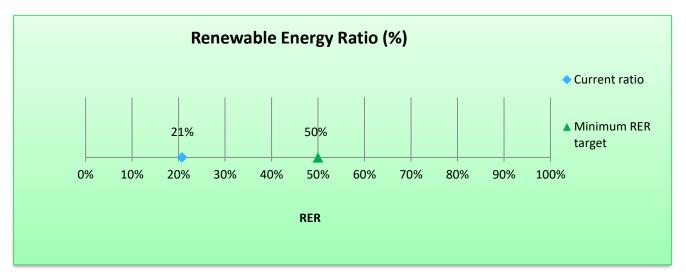
Overall Energy Efficiency Ratio	Current Ratio	Target Ratio	Recommended Improvement (%)	Check for energy efficiency measures on swimming pools
R* _{swp}		4,25		Tool BOX (6)
$R_{\rm m}$ = kWhe/m ²		Only for compa	arision to other loc	al swimming pool


$$R_{swp}^* = 10 \cdot \frac{kWh_{TOT}}{m_{swp}^2 \cdot HDD_{26}}$$

step2sport TOOL CALCULATOR: RESULTS

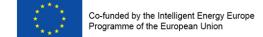
Energy Performance Ratio for Ice Rinks

Facilities: <u>Ice Rinks</u>



Energy Efficiency Ratio	Current Ratio	Target Ratio	Recommended Improvement (%)	Check for energy efficiency measures on ice-rinks
R* _{ir}		2,5		Tool BOX (7)
R _m = kWhe/m ²		Only for comparison to other local ice rinks facilities		

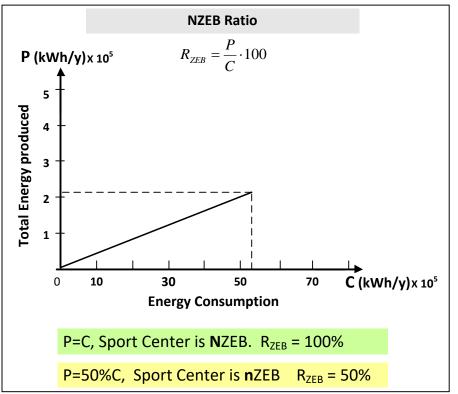
$$R_{ir}^* = 10^4 \cdot \frac{kWh_{TOT}}{m_{ice}^2 \cdot N_d \cdot HDD_{18}}$$



TOOL CALCULATOR: RESULTS Renewable Ratio (whole facility)

Renewable Energy Ratio	Current Ratio	Target Ratio	Check for measures on RES
RER		50%	Tool BOX (8)

$$R_{RES}(\%) = \frac{P_{RES}(total_renewable_production)}{C(TotalConsumption.)} \cdot 100$$



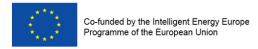
step2sport TOOL CALCULATOR: RESULTS

Ratio on (nearly) Zero Energy Building, nZEB

That's the Ratio of **0 consumption**:

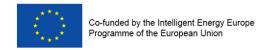
nZEB Ratio	Current Ratio	Target Ratio	GAP to nZEB	Check for measures on Renovations
R _{TOT}				Tool BOX (9)

$$R_{TOT}(\%) = \frac{P_{RES} + P_{CHP}}{C(TotalConsumption.)} \cdot 100$$


<u>Note</u>: this graphic only makes sense if energy efficiency measures have been implemented. So, energy demand has been reduced and consumption optimized.

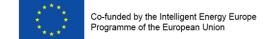
TOOL BOX Linked documents

- -Road map: Examples of Best Practices
- -Different links: redirect to PDF documents explaining:
- -Guide on how to obtain **Degree Days**
- -Energy **Efficiency Measures** for Sport Complexes, Sport Halls and Gyms
- -Energy Efficiency Measures for Swimming Pools
- -Energy Efficiency Measures for Ice Rinks.
- -RES measures
- -Summary LIST of Energy efficiency measures (global one)
- -All **KPIs** definition



Suggestions on the use of the TOOL

- Focus on energy Ratios based on annual data. But, best results are achieved with monthly data which application is more complex and time consuming.
- -Try to obtain energy data for more than one year (3 last years if possible) for better tracking and figure out trends.



Apply the TOOL

Just go into the tool and use it:

http://step2sport.eu/?page_id=1489

Thanks for your attention

Questions?

Josep M. Granollers ICAEN jm.granollers@gencat.cat