

DIGITAL PRINTED LI-ION BATTERIES

Basmati Workshop | 23rd of November 2016 | Thomas Yohann

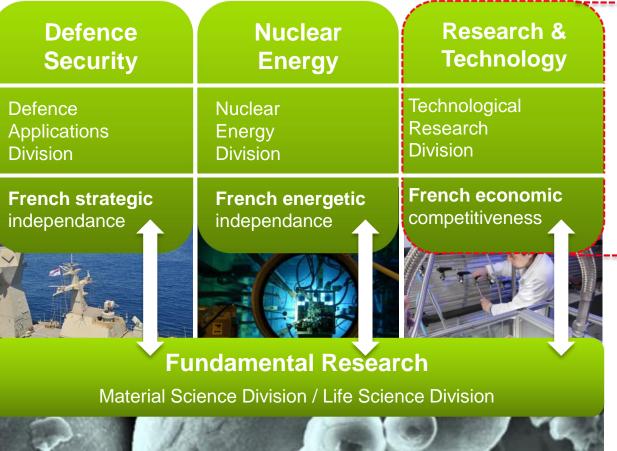
SUMMARY

1. INTRODUCTION

CEA / DRT / LITEN

RESEARCH PROGRAMMES

ELECTROCHEMICAL SYSTEMS


STRATEGY AND APPROACH

2. DIGITAL PRINTED LI-ION BATTERIES
OVERVIEW
INTERDIGITATED DESIGN
INK-JET VS. AEROSOL JET

3. RESULTS FROM BASMATI PROJECT

FROM ATOMIC RESEARCH TO RENEWABLE ENERGY

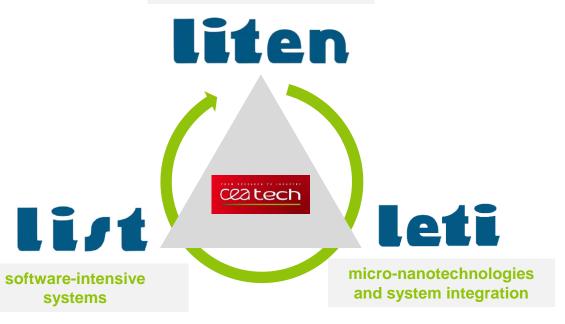
IECHNOLOGY

4 500 employees 550 M€ annual budget **500** patents / year 50 start-ups

SCIENCE

16 000 employees 10 Research centers 4B€ annual budget

580 priority patents filed / yr. 120 new high-tech companies created since 1984


A MULTIDISCIPLINARY APPROACH TO R&D: LITEN, LETI & LIST – A VIRTUOUS CIRCLE

2005 - Grenoble / Chambéry

Staff 1 400 - 170M€

new energy technologies and nanomaterials

Staff 800 - 70 M€

2003 - Paris Sud

Staff 1 800 - 240 M€

1967 - Grenoble

LITEN: KEY FIGURES

1000 researchers

- 2/3 permanents
- Average age < 40
- 28% female

Almost 1300 patents

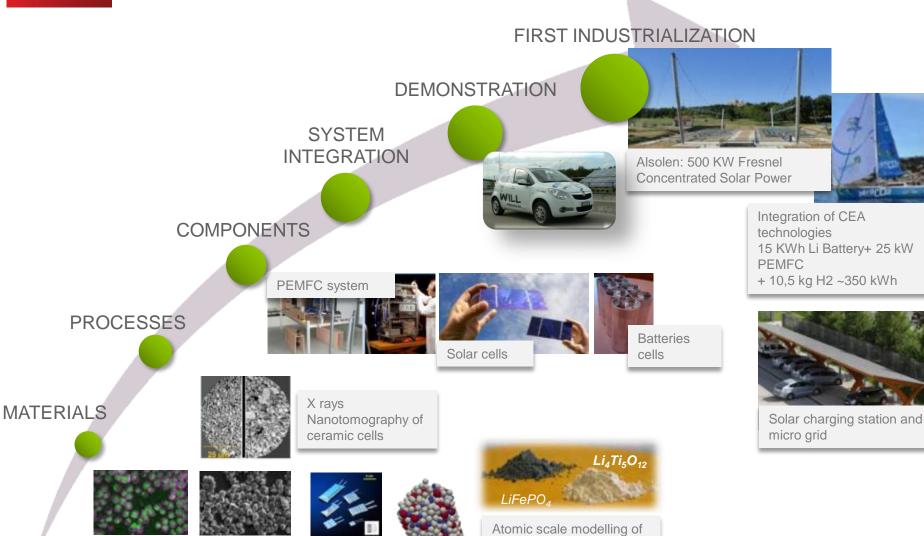
230 generated in 2015

> 350 industrial partners

140 M€ budget

Bilateral research contracts

- 50% large companies
- 50% SMEs

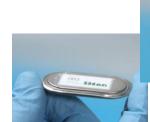

Fuel cell

catalyst

Powder for

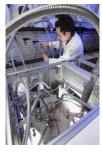
batteries

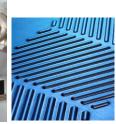
VERTICAL INTEGRATION: THE VALUE CHAIN


hybrides

LITEN RESEARCH PROGRAMMES

Lithium batteries Materials & processes Design, prototyping & test of battery systems Pack architecture **BMS**

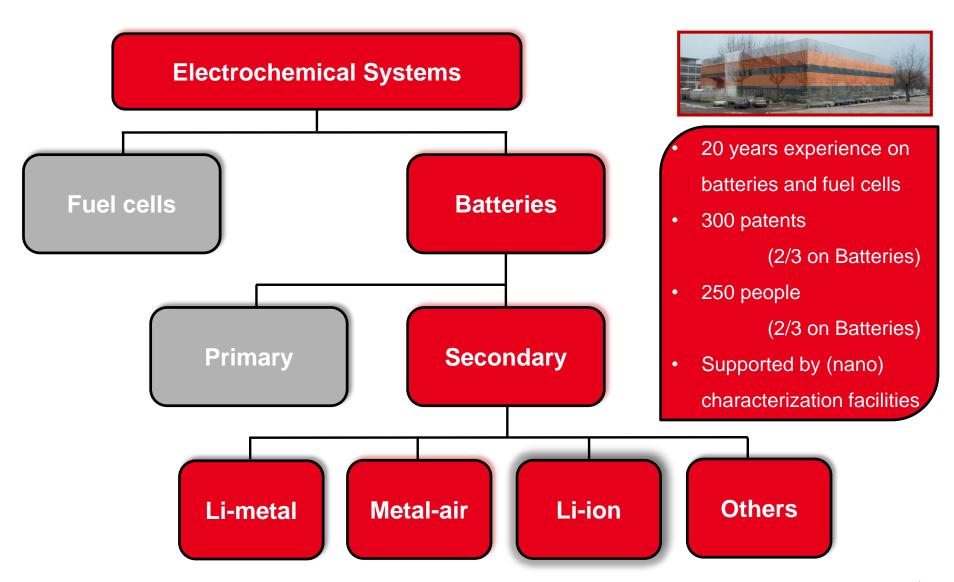


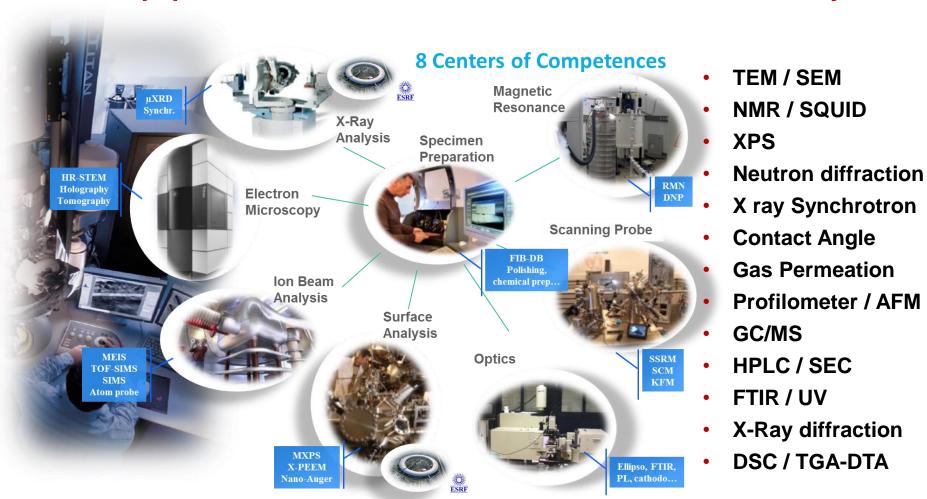


PEM Fuel cells

Design, prototyping & test of FC systems Materials & processes Components - stacks

Vehicle integration Integration of FC/batteries in EV/hybrid vehicles Monitoring




ELECTROCHEMICAL SYSTEMS AT LITEN

NANOCHARACTERIZATION PLATFORM

40 equipments / 2500m² of facilities / 3.5M€ of investments/year

OUR STRATEGY FOR MATERIALS

Laboratory scale (g)

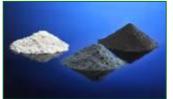
Innovation - Patents (synthesis-composition) Caracterization

Pilot scale (kg)

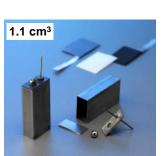
Synthesis scale-up Process optimization Reproducibility

Technology transfer

License agreement Industrial development



LI-ION PROTOTYPE CELLS



1 mAh to 40 Ah cells

Sensors

3.2V - 40 mAh -0.01% / cycle LiFePO₄-B/Graphite Efficiency > 99%

Medical Implants

3.7V - 50 mAh - 2.45 g 10 years at 37°C 4000 cycles Layered oxide/Graphite SAFT chemistry

Various « fit & form » (Pr, Cy, soft packaging, hard casing...) & Specific architectures and design (bipolar cells, thin cells,...)

Safety tests performed successfully

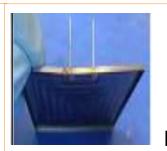
Strong weldings High tightness

Smart-Cards, Intelligent Wears, secure personal devices, packaging, E-books, autonomous sensors...

few mAh to 800 mAh, ultra-thin packaging (< 0.4 mm)

2.3 to 3.7 V; <1g to 45g => Towards fully printed Li Batteries

7.6 cm³


Photovoltaic

3.2V - 10 Ah High cycle life Operating up to +70°C

Spatial Sensor

3.7V - 350 mAh Cell for extreme conditions

Aeronautic

3.2V-170mAh Thin Cell for Extreme conditions of

LI-ION BATTERIES PILOT LINE

Pilot Line with 1000m² of dry room extension

 150-200kWh/month in practice (~3000cells)

- 500 channels for formation
- 1000 channels for cycling

Electrical, Abusive, Calendar Tests (1100 channels)

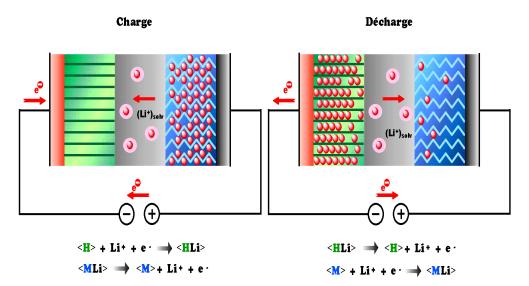
1. INTRODUCTION

CEA / DRT / LITEN

RESEARCH PROGRAMMES

ELECTROCHEMICAL SYSTEMS

STRATEGY AND APPROACH


2. DIGITAL PRINTED LI-ION BATTERIES
OVERVIEW
INTERDIGITATED DESIGN
INK-JET VS. AEROSOL JET

3. RESULTS FROM BASMATI PROJECT

OPERATION OF LITHIUM SECONDARY BATTERIES

- > Conversion of chemical energy into electrical energy
- > Reversible insertion of lithium ions in the structure of the anode material and the cathode (oxidation-reduction)
- Porous Electrodes (compromise impregnation / electronic percolation threshold)
- > Electrolytic medium (electrical insulation and ionic conduction)
- Current collectors (metals, polymers and ceramics drivers carbons)
- Substrate (sealed packaging)

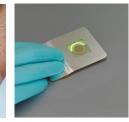
The first system lithium ion by Sony in 1991: Graphite/LiCoO₂ (18650) – 3.6V

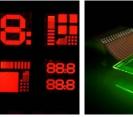
PRINTED ORGANIC ELECTRONICS

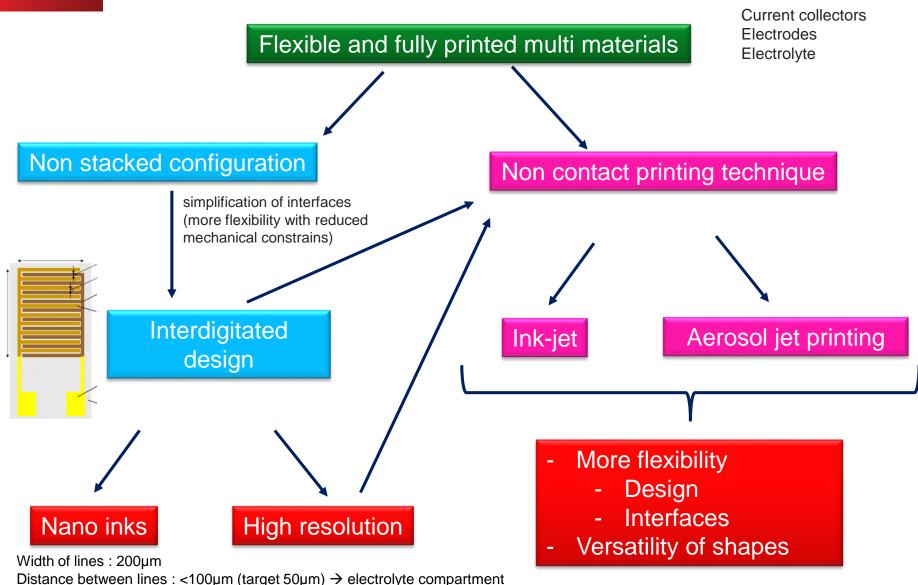
PLED (Polymer Light-Emitting Diodes)
HMI, signage
Devices, systems
Single digit, matrix
Logos

Sensors

capacitive pressure sensitive

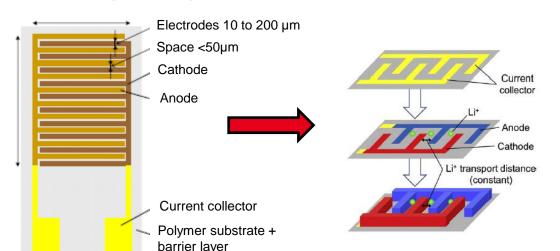


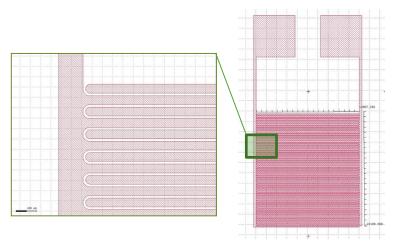




- → No rechargeable digital printed batteries!
- → No fully integrated battery + electronic

DIGITAL PRINTED BATTERY




INTERDIGITATED DESIGN AND DIMENSIONS

To simplify or solve several technological barriers, another battery architecture is possible: the interdigitated planar design

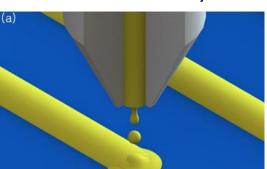
- The interdigitated concept reverses at 90 ° stacked architecture
 - Architectured current collectors on the same plane
 - Electrodes printed side by side on respective collectors
 - Separator printed between the electrodes printed on the entire surface
 - Electrolyte impregnation by the above
- Constraints of the concept:
 - ✓ High printing resolution(10µm +/- 1µm)

- Dimensions:
 - Width of lines : 200µm
 - Distance between lines : <100µm (target 50µm) → electrolyte compartment
- Solid electrolyte configuration
- No densification

Patent BF3007206

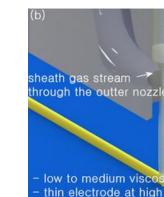
low viscosity

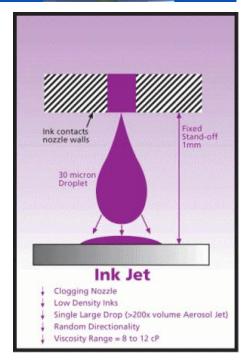
COMPARISON INK-JET AND AEROSOL JET PRINTING

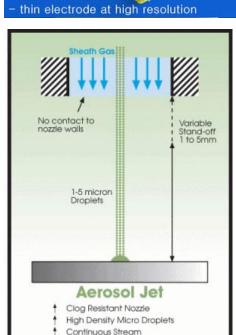

nebulized paste stream

through the inner nozzle

focused jet stream


with sheath gas


Aerosol jet



thin electrode at medium resolution

Inkjet

Tightly Focused

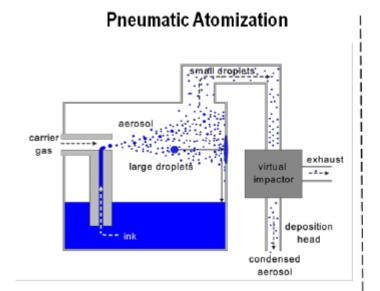
Viscosity Range = 1 to 1,000 cP

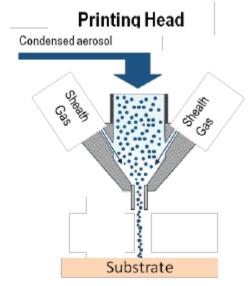
Advantages of aerosol jet printing:

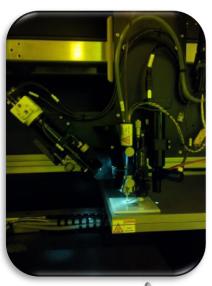
- Less constrains on inks (viscosity, surface tension)
- Less constrains on substrates (lower spreading)
- Best resolution

Disadvantages of aerosol jet printing:

Labscale




TECHNICAL SPECIFICATIONS


	Screen printing	Inkjet basic	Ink dispenser	Aerosol jetting
Particle size requested	< 100 nm	< 50 nm	< 50 nm	< 50 nm
Layer thickness (µm)	0.015-100	0.05-100	50	0.05 – 100
Definition (lines spaces) (µm)	30-100	5	10-500	2
Feature size (µm)	20-100	20-50	100	5-20
Registration (µm)	> 25	> 5	> 20	> 5
Patterning capacity	Required specific frame and hardware	Software development	Software development	Software development
Patterning Design	2D	3D	3D	3D
Ink viscosity Pa.s	0.5-50	0.001-0.1	0.02- 1	0.02 - 1
Throughput m ² /s	2-3	0.01-0.5	0.01-0.5	0.01-0.5

AEROSOL JET PRINTING

Experimental parameters (for pneumatic atomization):

- ✓ Carrier gas flow
- ✓ Exhaust flow
- ✓ Sheath flow
- ✓ Printing head temperature
- Plate temperature
- ✓ Ink temperature and stirring
- ✓ Nozzle size (100 to 300 µm)

PICTIC Platform

1. INTRODUCTION

CEA / DRT / LITEN

RESEARCH PROGRAMMES

ELECTROCHEMICAL SYSTEMS

STRATEGY AND APPROACH

2. DIGITAL PRINTED LI-ION BATTERIES
OVERVIEW
INTERDIGITATED DESIGN
INK-JET VS. AEROSOL JET

3. RESULTS FROM BASMATI PROJECT

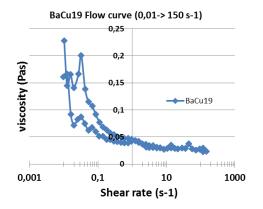
RESULTS FROM BASMATI

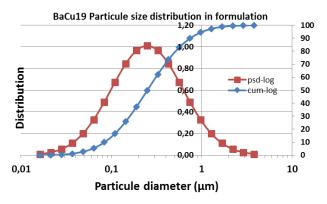
Current collectors

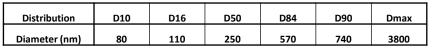
- → Cu / CNT / Ni / Gold
- Formulation / characterization
- Printing
- Sintering
- Electrodes

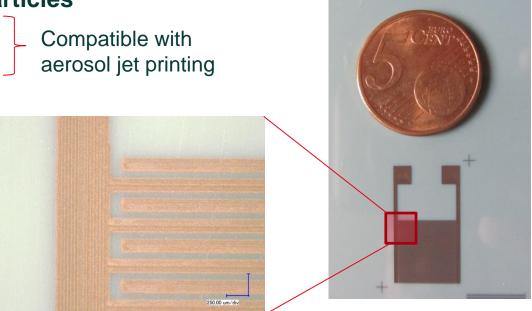
→ LFP / NMC / LTO / graphene

- Material synthesis
- Formulation
- Testing in coin cell with jellified configuration
- Printing (LFP)
- Multi-material printing for complete prototype (to be done)




RESULTS FROM BASMATI **CURRENT COLLECTORS**

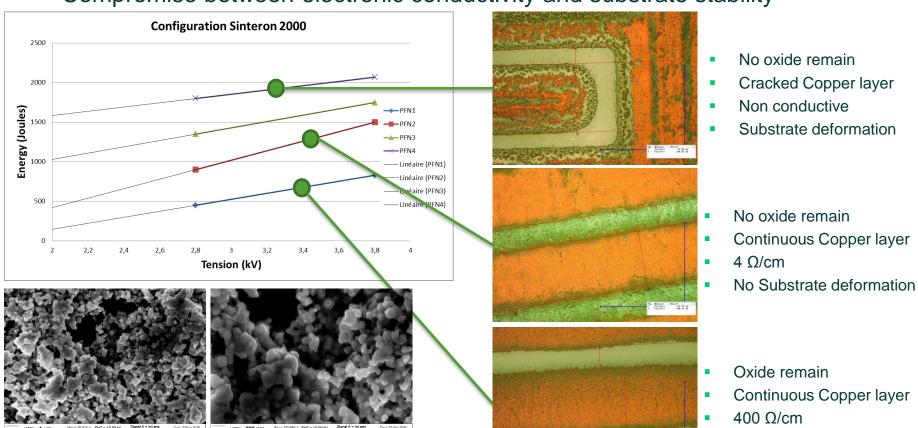

Copper current collector


Formulation of copper nanoparticles

- ✓ Particle size distribution
- Behavior at high shear rate

Optical image of interdigitated pattern of copper nanoparticles before sintering printed on PEEK.

- Successful printing with high resolution
- Same design was printed on PET
- PET = for testing
- PEEK = for final product

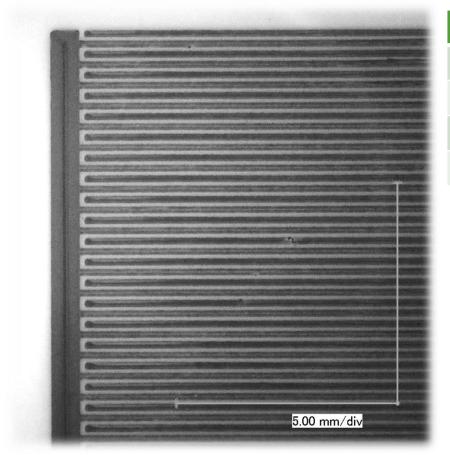

RESULTS FROM BASMATI **CURRENT COLLECTORS**

Copper current collector sintering

Xenon Flash sintering (20 ms \rightarrow 500 to 2000 J)

Copper particles after sintering (Xenon Flash sintering (20 ms/ 1400 J/ 3,6kV)

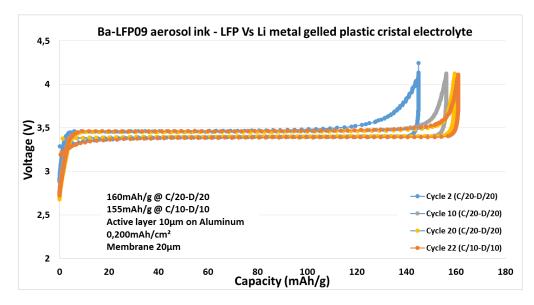
Compromise between electronic conductivity and substrate stability



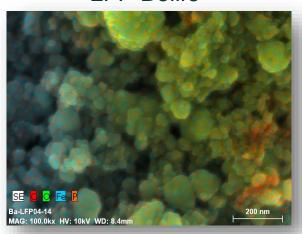
No Substrate deformation

RESULTS FROM BASMATI **CURRENT COLLECTORS**

Current collectors – CNT EG based ink (1 wt.%)


Dimensions	μm
Line width	180
Space between lines	60
Resolution	High
Satellites	No

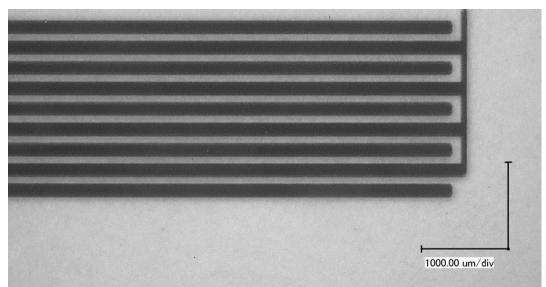
- Both current collector could be printed with CNT
 - Simplification of process
 - Only one material for current collectors
- Conductivity measurements ongoing


RESULTS FROM BASMATI **ELECTRODES - POSITIVE**

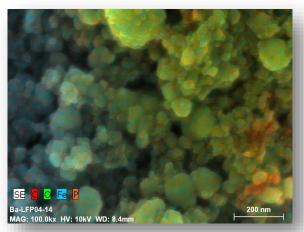
- Nano-ink compatible with numerial printing
- Good performances in terms of capacity retention and cycling

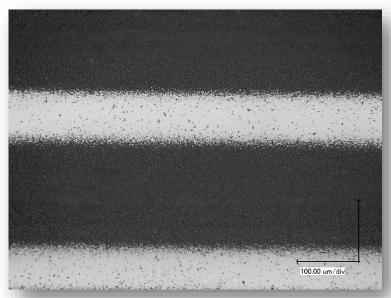
	Ba-LFP09
LFP Belife	70
SP	5
Gelled Matrix A/B	25(B)
EG/Water	88
Solid content (%)	12

LFP Belife


Membrane and jellified electrolyte

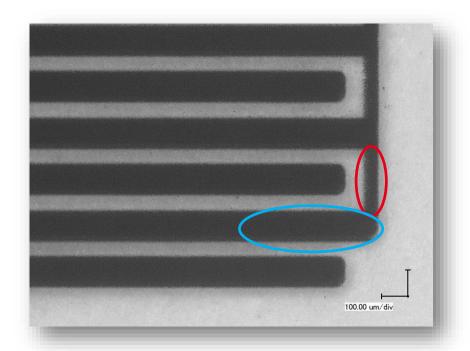
- Alternative plastic crystal solvent (Patent 2015 BF1557896)
- Non toxic
- Non volatile
- All solid configuration
- Jellified membrane (20µm)
- Electrode loading: 0,2mAh/cm²
- Final version:
 - 70%: active material + conductors
 - 30%: 15% polymer matrix + 15% electrolyte

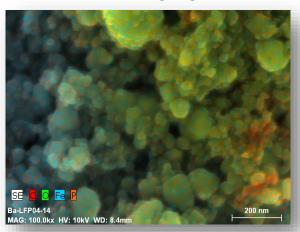

RESULTS FROM BASMATI ELECTRODES - POSITIVE


Electrodes printing

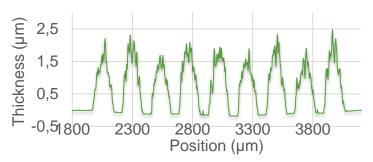
Ref. ink	LFP-09
Solvent	EG + H ₂ O
Dry content (wt. %)	12
Active material (wt. %)	70
Electrolyte (wt. %)	25
Additives (wt. %)	5

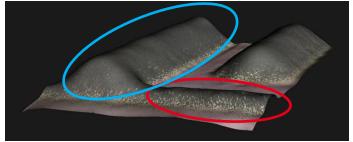
LFP Belife




RESULTS FROM BASMATI ELECTRODES - POSITIVE

Electrodes printing


Dimensions	μm
Line width	116 ± 3
Line thickness	$2,1 \pm 0,2$
Space between lines	58 ± 2



LFP Belife

LFP interdigitated profile sample

3D reconstructed optical image (not to scale)

CONCLUSIONS

- Current collectors
 - Copper → Printing + sintering
 - CNT → Printing (no need of sintering)
 - Conductivity measurements
- Positive electrode
 - LFP → Formulation + electrochemistry + printing
- Negative electrode
 - Nano graphite not available (testing with graphene)
 - Nano-LTO under study
 - 50 mAh/g for uncoated material (jellified configuration)
 - Theoretical capacity of LTO = 175 mAh/g
 - Formulation / characterization
 - Printing
- Multi-material printing for complete prototype

To be done

OK

OK

Ongoing

OK

Ongoing

Thank you for your attention

Contacts:

Yohann.THOMAS@cea.fr sebastien.solan@cea.fr Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www-liten.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019